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Abstract –This letter outlines the local fractional integral equations carried out by the local fractional calculus (LFC).
We first introduce the local fractional calculus and its fractal geometrical explanation. We then investigate the local
fractional Volterra/ Fredholm integral equations, local fractional nonlinear integral equations, local fractional singular
integral equations and local fractional integro-differential equations. Finally, their applications of some integral
equations to handle some differential equations with local fractional derivative and local fractional integral transforms
in fractal space are discussed in detail.
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1. Introduction

The theory of integral equations is one of the most
useful mathematical tools in both pure and applied
mathematics. It has enormous applications in many
physical problems. Many initial and boundary value
problems associated with ordinary differential equation
(ODE) and partial differential equation (PDE) can be
transformed into problems of solving some approximate
integral equations. However, some initial and boundary
value domains are fractal curves, which are everywhere
continuous but nowhere differentiable. As a result, we
cannot employ the classical calculus, which requires that
the defined functions should be differentiable, to process
ordinary local fractional differential equation (OLFDE)
and local fractional partial differential equation (LFPDE)
with fractal conditions. The theory of local fractional
integrals and derivatives (fractal calculus)[1-17], as one
of useful tools to handle the fractal and continuously non-
differentiable functions, was successfully applied in local
fractional Fokker–Planck equation[1, 2], anomalous
diffusion and relaxation equation in fractal space[3, 4],
the fractal heat conduction equation [5, 6], fractal-time
dynamical systems[7, 8], fractal elasticity [9-10], local
fractional diffusion equation [11], local fractional Laplace
equation [20], local fractional ordinary differential
equations[17, 18], local fractional partial differential
equation[17, 18, 20, 26], local fractional integral
equations[25, 30], fractal signals [17, 18, 19, 23],
fractional Brownian motion in local fractional derivatives
sense[16], fractal wave equation [20, 26].

This letter is to suggest some models for integral
equations based on the local fractional calculus, and
discuss their applications. The structure of this paper is as
follows. In section 2, the preliminary results on the local
fractional calculus and its fractal geometrical explanation.
Local fractional Volterra integral equations and their
applications are investigated in section 3. Local fractional
Fredholm integral equations and their applications are
investigated in section 4. Local fractional nonlinear

integral equations and their applications are in section 5.
Local fractional singular integral equations and their
applications are investigated in section 6. Local fractional
integro-differential equations and their applications are in
section 7. Conclusions are in section 8.

2. Preliminary results

To begin with we will provide a brief introduction to
local fractional calculus.

2.1. Local fractional continuity of functions

Definition 1 If there exists the relation [17-24, 30]

   0f x f x   (2.1)

with 0x x   ,for , 0   and ,   . Now  f x is

called local fractional continuous at 0x x , denote

by    
0

0lim
x x

f x f x


 .Then  f x is called local fractional

continuous on the interval  ,a b , denoted by

   ,f x C a b . (2.2)

Definition 2 A function  f x is called a non-

differentiable function of exponent , 0 1  , which
satisfy Hölder function of exponent  , then
for ,x y X such that [17-24, 30]

   f x f y C x y


   . (2.3)

Definition 3 A function  f x is called to be continuous

of order , 0 1  , or shortly continuous, when we
have the following relation [17-24, 30]

      0 0f x f x o x x    . (2.4)

Remark 1. Compared with (2.4), (2.1) is standard
definition of local fractional continuity. Here (2.3) is
unified local fractional continuity.
Lemma1(See [31])
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If  ,d and  ' ', d are metric spaces, E   and
':f E  satisfies

        ', , ,d x y d f x f y d x y   (2.5)

where  and  are positives and finite constants, then

      s s s s sH E H f E H E   (2.6)

where each 0s  and sH is the s-dimensional Hausdorff
measures.
Suppose  ,d and  ' ', d are metric spaces. A

bijection    ' ': , ,f d d   is said to be a bi-Lipschitz

mapping, if there are constants , 0   such that for
all 1 2,x x  ,

        '
1 2 1 2 1 2, , ,d x x d f x f x d x x   . (2.7)

The following lemma is also a standard result in fractal
geometry (see for example [32- 35]).
Lemma 2 (See [32])
If    ' ': , ,f d d   is a bi-Lipschitz mapping, then

    dim dimH HA f A (2.8)

for all A .
Lemma 3
Let F be a subset of the real line and be a fractal. If

   ' ': , ,f F d d  is a bi-Lipschitz mapping, then

there is for constants , 0   and F   ,

      s s s s sH F H f F H F  

such that for all 1 2,x x F ,

   1 2 1 2 1 2x x f x f x x x
        . (2.9)

This result is directly deduced from fractal geometry.
From Lemma 1and Lemma 2 it is observed that that

    dim dim .H HF f F s 

Theorem 4
Let F be a subset of the real line and be a fractal. If

     ': , , , ,f d d    is a bi-Lipschitz mapping,

then there is for constants , 0   ,

   1 2 1 2
s

x x f x f x
         . (2.10)

where  ,E   .
Proof. Let

    ,
sssH F           [36],

by Theorem 3 we get the result.
Theorem 5
Let F be a subset of the real line and be a fractal. If
 f  is a bi-Lipschitz mapping, then there are any

1 2,x x    and positive constant such that

   1 2 1 2
s

f x f x x x   . (2.11)

Proof. By using Theorem 4, considering  max ,  

and   we obtain the result.

Remark 2. if    ,f x C a b ,

then      dim , dim ,H HF a b C a b    and

   , :C a b f f x  is local fractional

continuous,  ,x F a b  .

2.2. Local fractional derivatives

Definition 4 Setting    ,f x C a b , local fractional

derivative of  f x of order at 0x x is defined [17-24,
30, 36, 37]

          
 0

0

0
0

0

limx x x x

f x f xd f x
f x

dx x x




  

 
 


, (2.12

)
where            0 01f x f x f x f x        .

For any  ,x a b , there exists
       xf x D f x  ,

denoted by

     ,xf x D a b .
Local fractional derivative of high order is written in the
form

         ...

k times

k
x xf x D D f x  


,
(2.6)

and local fractional partial derivative of high order

   ...

k times

k

k

f x
f x

x x x

  

  

  


  



.
(2.7)

2.3. Local fractional integrals

Definition 5 Setting    ,f x C a b , local fractional

integral of  f x of order in the interval  ,a b is defined
[17-30, 36, 37]

   

    

    
1

0
0

1
1

1
lim

1

a b

b

a

j N

j jt
j

I f x

f t dt

f t t











 

 



 

 
 





, (2.8)

where 1j j jt t t   ,  1 2max , , ,...jt t t t     and

1,j jt t    , 0,..., 1j N  , 0 , Nt a t b  , is a partition of

the interval  ,a b . For any  ,x a b , there exists
   a xI f x ,

denoted by

     ,xf x I a b .

Remark 3. If      , ,xf x D a b or    ,xI a b , we have

   ,f x C a b .
Here, it follows that

    0a aI f x  if a b ; (2.2)
       a b b aI f x I f x   if a b ; (2.3)

and      0
a aI f x f x

.
(2.4)
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We only need here the following:
For any    ,f x C a b , 0 1  , we have local
fractional multiple integrals, which is written as[27]

         
0 0 0

...

k times

k
x x x x x xI f x I I f x  



.
(2.5)

For 0 1  ,    kf x  ,kC a b , then we have[27]

     
 

0

kk
x xI f x f x

  , (2.7)

where          
0 0 0

...

k times

k
x x x x x xI f x I I f x  


and

         ...

k times

k
x xf x D D f x  


.
The results are valid [37]:
(  ) If      , , ,x y C a b C c d    , then

           , ,a b c d c d a bI I x y I I x y     .

(  ) If        , , , , ,x y z C a b C c d C e f      , then
       

       
       

, ,

,

,

a b c d e f

e f a b c d

c d e f a b

I I I x y z

I I I x y

I I I x y

  

  

  











.

2.4. Its fractal geometrical explanation

Definition 6 Let a be an arbitrary but fixed real number.
The integral staircase function  FS x of order αfor a set
F is given by [7, 8, 36]

 
 
 

, , , ;

, , , .
F

F a x if x a
S x

F x a if x a










  
 

Then we have the following results:
(a) The fractal mass function  , ,F a b can written as
[36]

 

 

 
 

    

 
 

1
0 1

1
1

max 0
0

, ,

lim
1

1
,

1

1

i i
i n

n
i i

x x
i

F a b

x x

H F a b

b a


















  




 





 

 
 



 


.

(b) we have [36]
   
 

 

 
 

 
 

1
0 1

1
1

max 0
0

, ,

lim
1

1

i i
i n

F F

n
i i

x x
i

S y S x

F x y

x x

y x

 














  




 









 



 

 .

(c) if a b c  , we have
     , , , , , ,F a b F b c F a c      [7, 8].

Remark 4. From formula (a) we obtain that

 

   

   

 
 

1

0
0

, ,

1
1

1
lim

1

1

b

a

j N

jt
j

F a b

dt

t

b a

















 

 



 

 
 



 



 .

Remark 5. From formula (c) we deduce to

     b a c b c a       , which is called the theory
of fractional set [18, 38]. Hence, we can understand it by
fractal geometry:

        H F b a H F c b H F c a         

,
ie. 1 2 3    . That is, the fractal geometric
representation is that cantor set [0,3] is equivalent to the
sum of cantor set [0,1] and cantor set [1,3] . The

dimension of cantor set is  , for 0 1  and, 1 ,
2 and 3 are real line numbers on a fractional set [18,
38, 39].

3. Local fractional Volterra integral
equations

3.1. Local fractional Volterra integral equations

The most standard form of Volterra linear local fractional
integral equations is of the form [30]

           ,
1

x

a
u x f x K x t u t dt





 

   (3.1)

or         ,
1

x

a
f x K x t u t dt






   (3.2)

where  ,K x t is the kernel of the local fractional

integral equation,  f x a local fractional continuous

function of x , and  a parameter. The limits of
integration are function of x and the unknown function
 u x appears linearly under the integral sign. The

equation (3.1) is called Volterra local fractional integral
equation of second kind; the equation (3.2) is called
Volterra local fractional integral equation of first kind.

3.2. Applications of local fractional Volterra
integral equations

We directly observe that the local fractional differential
equation of  order

   , ,
d

f x a x b
dx






   (3.3)

can be written immediately as the local fractional
Valtterra integral equation of second kind

         1
,

1

x

a
x a f t t dt   


       . (3.4)
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We observe that the local fractional differential equation
of 2 order

   
2

2 , ,
d

f x a x b
dx






   (3.5)

carrying out an integration by parts, can be expressed
immediately as

     
 

   

 
 
     

1

1
,

1 1

x

a

x a
x a a

x s
f t t dt







  



 


 

 


      

. (3.6)

4. Local fractional Fredholm integral
equations

4.1. Local fractional Fredholm integral equations

The most standard form of Fredholm linear local
fractional integral equations is given by the form

          ,
1

b

a
u x f x K x t u t dt





 

   (4.1)

or

        ,
1

b

a
f x K x t u t dt






   (4.2)

where  ,K x t is the kernel of the local fractional

integral equation,  f x a local fractional continuous

function of x , and  a parameter. The limits of
integration a and b are constants and the unknown
function  u x appears linearly under the integral sign.
The equation (4.1) is called Fredholm local fractional
integral equation of second kind; this equation (4.2) is
called Fredholm local fractional integral equation of first
kind.

4.2. Applications of local fractional Fredholm
integral equations

We consider the following boundary value problem:

 

   

, ,

,a b

d
f x a x b

dx
a b








   


  


  

(4.3)

carrying out an integration by parts, can be expressed
immediately as

     
     

       

1

1
, ,

1

b

a

x a
x a b a

K x t f t t dt





   






     

     
(4.4)

where

 

 
 

 
 

 
 

 
 

,0
1

,

,0
1

b x t a
t x b

b a
K x t

x a b t
x t b

b a

 



 







  
  

  
 

    

.

5. Local fractional nonlinear integral
equations

5.1. Local fractional nonlinear integral equations

If the unknown function  u t appearing under the

integral sign is given in the functional form   F u t

such as the power of  u t is no longer unity. Then the
Volterra and Fredholm local fractional integral equations
are classified as nonlinear local fractional integral
equations. In general, a nonlinear local fractional integral
equation is defined as given in the following equations:

           ,
1

x

a
u x f x K x t F u t dt





 

   (5.1)

or

           ,
1

b

a
u x f x K x t F u t dt





 

   .
(5.2)

Equations (5.1) and (5.2) are called nonlinear Volterra
local fractional integral equations and nonlinear
Fredholm local fractional integral equations, respectively.
If we set   0f x  , in Volterra or Fredholm local
fractional integral equations, then the resulting

         ,
1

x

a
u x K x t F u t dt






   (5.3)

and

         ,
1

b

a
u x K x t F u t dt






   (5.4)

The equations (5.3) and (5.4) are called homogeneous
local fractional integral equation; otherwise it is called
nonhomogeneous local fractional integral equation.

5.2. Applications of local fractional nonlinear
integral equations

The Volterra or Fredholm nonlinear local fractional
integral equation can be written in the form

          2

0
,

1

x nu x f x K x t u t dt





 
   (5.5)

or

          2, , 1
1

b n

a
u x f x K x t u t dt n





  

   . (

5.6)
Equations (4.1) and (4.2) are called nonlinear Volterra
local fractional integral equations and nonlinear
Fredholm local fractional integral equations, respectively.

6. Local fractional singular integral
equations

6.1. Local fractional singular integral equations

A singular local fractional integral equation is defined
as an integral with the infinite limits or when the kernel
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of the integral becomes unbounded at a certain point in
the interval.

Local fractional singular integral equation of first kind

         
 

 
,

1

a x

b x
f x K x t u t dt






   (6.1)

or the local fractional singular integral equation of second
kind

          
 

 
,

1

a x

b x
u x f x K x t u t dt





 

   (6.2)

is called singular if  a x , or  b x , or both limits of
integration are infinite. The above are classified as the
singular local fractional integral equations.

6.2. Applications of singular local fractional
integral equations

           
0

1
1

u x E x E x u t dt
T

 
 


 

  ;
(6.3)

         1
1

F f x E i x f x dx   
  





 
   [17-2

0, 22-25, 30, 36]; (6.4)

         
0

1
1

L f x f x E s x dx  
 


 
   [18, 21,

24, 30, 36]; (6.5)

         0

1
1

F f x f x E i h x dx    
  





 
   [18

] (6.6)

if we have
 
 0

2

1
h


 



 

.

7. Local fractional integro-differential
equations

7.1. Local fractional integro-differential
equations

In this type of equations, the unknown function  u x
appears as the combination of the ordinary local
fractional derivative and under the local fractional
integral sign.

Local fractional Volterra type integro-differential
equation is written in the form

                2

1

x

a
u x u x f x g x u x dt


  


  

   ,

(7.1)
or local fractional Fredholm type integro-differential
equation is written in the form

                2

1

b

a
u x u x f x g x u x dt


  


  

   .

(7.2)
Equation (7.1) is of the Volterra local fractional integro-
differential equations, whereas equation (7.2) is of the
Fredholm local fractional integro-differential equations.

7.2. Applications of local fractional integro-
differential equations

The Volterra local fractional integro-differential
equation can be written in the for

              2

0
,

1

xx
u x u x E x u x dt


  

 
  

  
 0,1x (7.3)

with the initial conditions

 0 1u  and    0 1u   .
The Fredholm linear local fractional integro-

differential equation can be written as

   

      
12

0
,

1
x

u u E t u t dt


  


 
    0,1x

(7.4)
with the initial conditions

 0 1u  and    0 0u   .
The Volterra nonlinear local fractional integro-

differential equation can be written in the form

            2 2

0
,

1

xx
u u x u E x u x dt


  

 
  

  
 0,1x (7.5)

with the initial conditions
 0 1u  and    0 1u   .

The Fredholm nonlinear local fractional integro-
differential equation can be written as

     

       
12 2

0
,

1
x

u u x u E t u t dt


  


 
  

 0,1x (7.6)
with the initial conditions

 0 1u  and    0 0u   .

8. Conclusions

In this letter, we study the local fractional calculus and
its fractal geometrical explanation. The theory of integral
equations in the local fractional calculus is one of the
most useful mathematical tools in both pure and applied
mathematics in the fractal fields. Here, we investigate the
local fractional integral equations, such as local fractional
Volterra/ Fredholm integral equations, local fractional
nonlinear integral equations, local fractional singular
integral equations and local fractional integro-differential
equations. It is useful for engineers and scientists to
handle some differential equations with local fractional
derivative and local fractional integral transforms in
fractal domains, which is applied to deal with the fractal
problems, i.e., the fractal differential equations, fractal
signals and the governing equations in fractal media.
Hence, the theory of local fractional equations is of great
significance for engineers and scientists to handle the
problems and nonlinear behaviors of the fractal
mathematics and engineering [40-44].
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